Ken Julian Schrenk
initials@fastmail.com
arXiv GitHub Google Scholar LinkedIn ORCID

Programming
public contributions

  • recycling_mc: Example of Recycling Monte Carlo technique.
  • manna: Fixed energy Manna sandpile model Monte Carlo simulation.
  • gauss_lpp: Numerical evaluation of the left passage probability.
  • retention: Water retention model Monte Carlo simulation.
  • mcpele: Monte Carlo and parallel tempering routines.
  • pele: Tools for global optimization and energy landscape exploration.
  • Videos

  • Water retention model: long-range correlated landscape
  • Water retention model: uncorrelated landscape
  • Flooding algorithm for watersheds
  • Lattice Boltzmann racing car
  • Notes
    with Julián Cancino

  • Phenomenology of Particle Physics I
  • Phenomenology of Particle Physics II
  • Thesis
    K. J. Schrenk, Discontinuous percolation transitions and lattice models of fractal boundaries and paths, PhD thesis, ETH Zurich, Switzerland, 2014.

    Publications

    1. S. Martiniani, K. J. Schrenk, J. D. Stevenson, D. J. Wales, and D. Frenkel, Structural analysis of high-dimensional basins of attraction, Physical Review E 94, 031301(R) (2016), arXiv:1603.09627.
    2. K. J. Schrenk, M. R. Hilário, V. Sidoravicius, N. A. M. Araújo, H. J. Herrmann, M. Thielmann, and A. Teixeira, Critical fragmentation properties of random drilling: How many holes need to be drilled to collapse a wooden cube?, Physical Review Letters 116, 055701 (2016), arXiv:1601.03534.
    3. K. J. Schrenk and D. Frenkel, Evidence for non-ergodicity in quiescent states of periodically sheared suspensions, Journal of Chemical Physics 143, 241103 (2015), arXiv:1510.01280.
    4. S. Martiniani, K. J. Schrenk, J. D. Stevenson, D. J. Wales, and D. Frenkel, Turning intractable counting into sampling: Computing the configurational entropy of three-dimensional jammed packings, Physical Review E 93, 012906 (2016), arXiv:1509.03964.
    5. N. Posé, K. J. Schrenk, N. A. M. Araújo, and H. J. Herrmann, Schramm-Loewner Evolution and isoheight lines of correlated landscapes, arXiv:1508.07942.
    6. K. J. Schrenk and J. D. Stevenson, Numerical evaluation of the Gauss hypergeometric function: Implementation and application to Schramm-Loewner evolution, arXiv:1502.05624.
    7. N. A. M. Araújo, K. J. Schrenk, H. J. Herrmann, and J. S. Andrade Jr., Watersheds in disordered media, Frontiers in Physics 3, 5 (2015), arXiv:1412.5738.
    8. N. A. M. Araújo, P. Grassberger, B. Kahng, K. J. Schrenk, and R. M. Ziff, Recent advances and open challenges in percolation, European Physical Journal Special Topics 223, 2307 (2014), arXiv:1404.5325.
    9. K. J. Schrenk, N. A. M. Araújo, R. M. Ziff, and H. J. Herrmann, Retention capacity of correlated surfaces, Physical Review E 89, 062141 (2014), arXiv:1403.2082.
    10. N. Posé, K. J. Schrenk, N. A. M. Araújo, and H. J. Herrmann, Shortest path and Schramm-Loewner Evolution, Scientific Reports 4, 5495 (2014), arXiv:1402.0991.
    11. K. J. Schrenk, N. Posé, J. J. Kranz, L. V. M. van Kessenich, N. A. M. Araújo, and H. J. Herrmann, Percolation with long-range correlated disorder, Physical Review E 88, 052102 (2013), arXiv:1309.2994.
    12. K. J. Schrenk, N. A. M. Araújo, and H. J. Herrmann, Stacked triangular lattice: Percolation properties, Physical Review E 87, 032123 (2013), arXiv:1302.0484.
    13. E. Daryaei, N. A. M. Araújo, K. J. Schrenk, S. Rouhani, and H. J. Herrmann, Watersheds are Schramm-Loewner Evolution curves, Physical Review Letters 109, 218701 (2012), arXiv:1206.3159.
    14. K. J. Schrenk, N. A. M. Araújo, and H. J. Herrmann, How to share underground reservoirs, Scientific Reports 2, 751 (2012), arXiv:1204.3737.
    15. E. Fehr, K. J. Schrenk, N. A. M. Araújo, D. Kadau, P. Grassberger, J. S. Andrade Jr., and H. J. Herrmann, Corrections to scaling for watersheds, optimal path cracks, and bridge lines, Physical Review E 86, 011117 (2012), arXiv:1203.3038.
    16. K. J. Schrenk, A. Felder, S. Deflorin, N. A. M. Araújo, R. M. D'Souza, and H. J. Herrmann, Bohman-Frieze-Wormald model on the lattice, yielding a discontinuous percolation transition, Physical Review E 85, 031103 (2012), arXiv:1111.2703.
    17. K. J. Schrenk, N. A. M. Araújo, and H. J. Herrmann, Gaussian model of explosive percolation in three and higher dimensions, Physical Review E 84, 041136 (2011), arXiv:1104.5376.
    18. K. J. Schrenk, N. A. M. Araújo, J. S. Andrade Jr., and H. J. Herrmann, Fracturing ranked surfaces, Scientific Reports 2, 348 (2012), arXiv:1103.3256.
    19. E. A. Oliveira, K. J. Schrenk, N. A. M. Araújo, H. J. Herrmann, and J. S. Andrade Jr., Optimal path cracks in correlated and uncorrelated lattices, Physical Review E 83, 046113 (2011), arXiv:1101.5910.